(μ-Oxo or hydroxo)bis(μ-carboxylato)diruthenium(III) complexes with tris(1-pyrazolyl)borate face-capping ligand, affording versatile oxidation states *via* a protonation/deprotonation couple

Tomoaki Tanase,*,a Nao Takeshita,a Shigenobu Yano,*,a Isamu Kinoshita and Akio Ichimura

- ^a Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-higashi-machi, Nara 630, Japan
- ^b Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 662, Japan

(μ-Oxo or μ-hydroxo)bis(μ-acetate)diruthenium(III) complexes with tris(1-pyrazolyl)borate, $[Ru_2^{III}(\mu-O)(\mu-CH_3COO)_2(HBpz_3)_2]$ (1) and $[Ru_2^{III}(\mu-OH)(\mu-CH_3COO)_2(HBpz_3)_2](PF_6)$ (2), have been prepared and characterized by X-ray crystallography, and showed a wide range of redox processes, $Ru_2^{II} \leftrightarrow Ru_2^{III} \leftrightarrow Ru_2^{III}$

Intensive studies have been focused on the non-heme diiron proteins, such as hemerythrin, R2 subunit of ribonucleotide reductase, and methane monooxygenase; these involve diiron active centers bridged by carboxylates and a mono-atom, oxo or hydroxo unit, and function by utilizing redox cycles coupled with dioxygen molecule. 1-3 A number of synthetic models with a $(\mu$ -oxo, hydroxo, or alkoxo)bis $(\mu$ -carboxylato) diiron(III) core have already been reported, 1-3 but, owing to their instability, those involving an Fe^{IV} center have not been studied in detail, in spite of their biorelevant importance. We have been interested in the parallel chemistry of (µ-oxo, hydroxo, or alkoxo)bis(µ-carboxylato)diruthenium complexes. hoping to obtain detailed structural and physical information of a wide variety of oxidation states from Ru₂^{II} to Ru₂^{IV} and to utilize their redox properties to mimic biological systems and to develop catalytic organic reactions.^{4,5} The high valency oxo-bridged diruthenium complexes could also be useful artificial model systems for the oxygen evolving center of photosystem II.6 We wish to report here the syntheses and structures of the (μ-oxo or hydroxo)bis(μ-carboxylato)diruthenium(III) complexes with tris(1-pyrazolyl)borate face-capping ligand (HBpz₃⁻), which affords a wide range of oxidation states via protonation and deprotonation of the mono-atom bridge. The neutral Ru₂^{III} complex, $[Ru_2^{III}(\mu-O)(\mu-CH_3COO)_2(HBpz_3)_2]$, has not been reported Fe_2^{III} although its counterpart. $[Fe_2^{III}(\mu-O)(\mu-CH_3COO)_2(HBpz_3)_2]^{7,8}$ has been reported as one of the seminal contributions on bioinorganic chemistry relevant to non-heme diiron proteins.

Reaction of [Ru₂(CH₃COO)₄Cl]⁹ with two equiv. of sodium trispyrazolyl borate (Na[HBpz₃]) in methanol at room temperature afforded a neutral diruthenium(III) complex,

[Ru₂(μ-O)(μ-CH₃COO)₂(HBpz₃)₂]·EtOH (1·EtOH) (27%).† Block-shaped crystals of $1 \cdot \text{Et}_2\text{O}$ were obtained from an ethanol–diethyl ether system. Treatment of $1 \cdot \text{Et}_0\text{OH}$ with HPF₆ (60% in water) yielded violet rectangular crystals of [Ru₂(μ-OH)(μ-CH₃COO)₂(HBpz₃)₂] (PF₆)·Et₂O (2·Et₂O) in 58% yield.† The protonation and deprotonation proceeded reversibly in a quantitative manner based on the electronic spectral changes; characteristic absorption bands, λ /nm (log ϵ /M⁻¹ cm⁻¹), were observed at 570 (4.143) and 276 (4.288) for 1 and 544 (3.898), 394 (3.623), 338 (3.699) and 252 (4.215) for 2. Complex 1 was diamagnetic on the basis of the ¹H NMR spectrum, whereas the ¹H NMR spectrum of 2 showed isotropically shifted features for δ from -6 to 8 ppm owing to its paramagnetism.

† Experimental and analytical data for $1\cdot$ EtOH. The blue major band on the alumina column (10% deactivated) eluted with dichloromethane was collected and concentrated to dryness. The residue was crystallized from hot ethanol to give microcrystals of $1\cdot$ EtOH in 27% yield. Anal. calcd for $C_{24}H_{32}N_{12}O_6Ru_2B_2$ (F_w 808.56): C, 35.65; H, 3.99; N, 20.79. Found: C, 35.31; H, 4.04; N, 21.05%.

For $2 \cdot \text{Et}_2\text{O}$. Complex $1 \cdot \text{EtOH}$ was treated with HPF $_6$ (1 equiv. 60% water solution) in a CH $_2\text{Cl}_2$ -CH $_3\text{OH}$ mixed solvent at room temperature. The mixture was concentrated to dryness and the residue was crystallized from a CH $_2\text{Cl}_2$ -Et $_2\text{O}$ mixed solvent to afford violet crystals of $2 \cdot \text{Et}_2\text{O}$ in 58% yield. Anal. calcd for C $_26\text{H}_{37}\text{N}_{12}\text{O}_6\text{Ru}_2\text{B}_2\text{PF}_6$ (F_w 982.58): C, 31.78; H, 3.80; N, 17.11. Found: C, 32.16; H, 3.91; N, 17.40%.

For $3\cdot 0.5\mathrm{CH_2Cl_2}$. Complex $1\cdot \mathrm{EtOH}$ was treated with $(\mathrm{NH_4})_2$ -Ce $(\mathrm{NO_3})_6$ and $\mathrm{NH_4PF_6}$ in acetonitrile for 1--2 h at room temperature. The solvent was removed under reduced pressure and the residue was extracted with $\mathrm{CH_2Cl_2}$ and crystallized from a $\mathrm{CH_2Cl_2}$ -Et₂O solvent system to give violet crystals of $3\cdot 0.5\mathrm{CH_2Cl_2}$ in 72% yield. Anal. calcd for $\mathrm{C_{22.5}H_{27}N_{12}O_5Ru_2B_2CIPF_6}$ (F_w 949.92): C, 28.46; H, 2.87; N, 17.70. Found: C, 28.75; H, 2.98; N, 17.48%.

The structures of 1 and 2 were shown by X-ray crystallography to involve biorelevant (μ -oxo)bis(μ -acetate)- and (μ -hydroxo)bis(μ -acetate)-diruthenium(III) cores, respectively (Fig. 1 and 2).‡ The complex 1 consists of two Ru^{III} octahedra bridged by an oxo and two acetate ligands with two face-capping HBpz₃⁻ ligands (Fig. 1). The (μ -oxo)bis(μ -acetate)diruthenium(III) core is essentially identical to those of cationic compounds [Ru₂(μ -O)(μ -CH₃COO)₂ (Me₃tacn)₂]²⁺ (Me₃tacn = 1,4,7 - trimethyl - 1,4,7 - triazacyclononane), 10,11

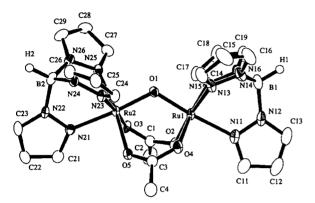


Fig. 1 ORTEP diagram of the complex 1 showing 40% probability ellipsoids. Selected distances/Å and angles/ $^{\circ}$: Ru(1) \cdots Ru(2) = 3.2544(7), Ru(1)-O(1) = 1.868(3), Ru(1)-O(2) = 2.085(3), Ru(1)-O(4) = 2.080(3), Ru(1)-N(11) = 2.130(4), Ru(1)-N(13) = 2.040(4), Ru(1)-N(15) = 2.038(4), Ru(2)-O(1) = 1.858(3), Ru(2)-O(2) = 2.072(3), Ru(2)-O(5) = 2.000(3), Ru(2)-N(21) = 2.118(4) O(3) = 2.072(3), Ru(2) - O(5) = 2.090(3), Ru(2) - N(21) = 2.118(4), Ru(2) - N(23) = 2.039(4), Ru(2) - N(25) = 2.042(4), O(1) - Ru(1) - Ru(O(2) = 97.3(1), O(1) - Ru(1) - O(4) = 91.9(1), O(1) - Ru(1) - N(11) =175.5(1), O(1)—Ru(1)—N(13) = 88.4(1), O(1)—Ru(1)—N(15) = 94.0(1), O(2) -Ru(1) -O(4) = 89.3(1), O(2) -Ru(1) -N(13) = 173.9(1), O(4)Ru(1)-N(15) = 174.1(1), N(11)-Ru(1)-N(13) = 87.1(2), Ru(1)-N(15) = 85.4(1), N(13)-Ru(1)-N(15) = 87.5(2),N(11)— Ru(1)-N(15) = 85.4(1),O(1) $\begin{array}{lll} Ru(2) - O(3) = 92.0(1), & O(1) - Ru(2) - O(5) = 96.8(1), & O(1) - Ru(2) - O(5) = 96.8(1), & O(1) - Ru(2) - O(5) = 89.9(1), & O(3) - Ru(2) - N(23) = 175.4(1), & O(5) - Ru(2) - N(25) = 173.1(1), & N(21) - Ru(2) - N(23) = 175.4(1), & O(5) - Ru(2) - N(25) = 173.1(1), & O(5) - Ru(2) - N(25)$ 175.4(1), O(5)—Ru(2)—N(25) = 173.1(1),N(21) – Ru(2) – N(25) = 86.7(1), N(23)—Ru(2)—N(25) = 86.4(1), 87.0(1), Ru(1) - O(1) - Ru(2) = 121.7(2)

‡ Crystal data $1 \cdot \text{Et}_2\text{O}$. ($\text{C}_{26}\text{H}_{36}\text{N}_{12}\text{O}_6\text{B}_2\text{Ru}_2$, $F_\text{w} = 836.41$), $T = -117\,^\circ\text{C}$, monoclinic space group $P2_1/c$, a = 14.457(3), b = 13.068(3), c = 18.727(2) Å, $\beta = 104.00(1)^\circ$, V = 3433.0(9) Å³, Z = 4. A blue block-shaped crystal 0.45 mm × 0.30 mm × 0.10 mm was fixed on the top of a glass fiber with Paraton N oil. 8195 reflections ($4^\circ < 2\theta < 55^\circ$) were measured on a Rigaku AFC7R diffractometer with graphite monochromated Mo-K α radiation. An absorption correction by ψ -scan method was applied ($\mu = 9.38~\text{cm}^{-1}$). The structure was solved by direct methods using the program SIR92 and was refined to R = 0.039 and $R_\text{w} = 0.047$ for 5771 independent reflections with $I > 3\sigma(I)$. All non-hydrogen atoms were refined anisotropically and the hydrogen atoms were located from difference Fourier syntheses and were refined isotropically.

Crystal data 2·Et₂O. (C₂₆H₃₇N₁₂O₆B₂PF₆Ru₂, $F_{\rm w}$ = 982.38), T = -118 °C, monoclinic space group $P2_1/n$, a = 11.989(4), b = 19.849(6), c = 16.361(5) Å, $\beta = 104.11(2)^\circ$, V = 3775(1) Å³, Z = 4. A violet rectangular crystal 0.47 mm × 0.23 mm × 0.10 mm was fixed on the top of a glass fiber with Paraton N oil, and 6824 reflections (4° < 20 < 50°) were measured on a Rigaku AFC7R diffractometer with graphite monochromated Mo-Kα radiation. An absorption correction by ψ -scan method was applied (μ = 9.29 cm⁻¹) The structure was solved by direct methods using the program SIR92 and was refined to R = 0.035 and $R_{\rm w} = 0.042$ for 5072 independent reflections with $I > 3\sigma(I)$. All non-hydrogen atoms were refined anisotropically and the hydrogen atoms were located from difference Fourier syntheses and were refined isotropically. All calculations were carried out on a Silicon Graphics Indigo Station with teXsan program system.

Supplementary data available from the Cambridge Crystallographic Data Centre, reference 440/046.

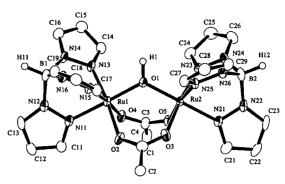
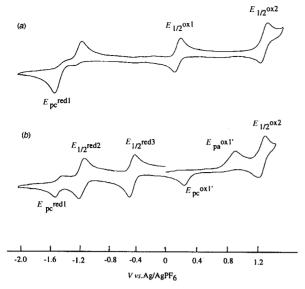



Fig. 2 ORTEP diagram of the complex cation of 2 showing 40% probability ellipsoids. Selected distances/Å and angles/°: Ru(1)··· Ru(2) = 3.4490(9), Ru(1) - O(1) = 1.957(3), Ru(1) - O(2) = 2.080(4), O(1) – Ru(1) – O(2) = 92.6(1), O(1) – Ru(1) – O(4) = 91.5(1), Ru(1) – N(11) = 179.1(1), O(1) – Ru(1) – N(13) = 91.8(1), O(1) – Ru(1) – N(15) = 94.4(1), O(2) – Ru(1) – O(4) = 92.1(1), O(2) – Ru(1)-N(13) = 174.8(1), O(4)-Ru(1)-N(15) = 174.1(1), Ru(1)-N(13) = 87.3(2), N(11)-Ru(1)-N(15) = 85.8(1),N(11)-N(13)-Ru(1) - N(15) = 88.6(1), O(1) - Ru(2) - O(3) = 90.9(1), O(1) - Ru(2)O(5) = 92.4(1),O(1)-Ru(2)-N(21) = 179.2(1), O(3) - Ru(2)O(5) = 93.1(1), O(3) - Ru(2) - N(23) = 173.7(1), O(5) - Ru(2) - N(25) =N(21)—Ru(2)—N(23) = 86.6(2), N(23)—Ru(2)—N(25) = 88.3(1),174.6(1), N(21)—Ru(2)—N(25) = Ru(1) - O(1) - Ru(2) =86.8(1), 123.4(2). Ru(1)—O(1)—H(1) = 118(2), Ru(2)—O(1)—H(1) = 118(2)

zol), 13 and $[Ru_2(\mu-O)(\mu-O_2P(O)(OH))_2(tpm)_6]$ [tpm = tris(1pyrazolyl)methane]. 14 The complex cation of 2 involves a (μ-OH)(μ-CH₃COO)₂Ru₂^{III} core with two HBpz₃ ligands capping the facial sites. The hydrogen atom, H(1), of the OH group is unambiguously determined by difference Fourier synthesis. The bridging oxygen atom, O(1), has an essentially sp² character, the sum of bond angles being 359°, and the (μ-OH) Ru₂ unit takes a planar arrangement. The Ru ··· Ru distance in 2 [3.4490(9) Å] is dramatically elongated in comparison with that in 1 [3.2544(7) Å], mainly ascribable to the Ru-O_{hydroxo} bond lengths (average 1.955 Å) being longer than the Ru-O_{oxo} ones (average 1.855 Å). This is the first structurally characterized example of the (μ-hydroxo)bis(μcarboxylato)diruthenium(III) complex, Wieghardt and coworkers having briefly reported the preliminary data for the crystal structure of $[Ru_2^{III}(\mu\text{-OH})(\mu\text{-CH}_3\text{COO})_2(\text{tacn})_2]^{3+}$ $[Ru\cdots Ru = 3.472(2)$ Å]. A Recently, Yamaguchi and co-workers¹⁵ have reported the Ru···Ru distances for $[Ru_2^{III}(\mu\text{-OH})(\mu\text{-CH}_3COO)_2(bpy)_2L_2]^{3+}[L = py (4), 1\text{-methyl-}]$ imidazole (5)] determined by EXAFS analyses as 3.54 (4) and 3.48 Å (5), which are rather longer than the present value. It should be noted that the structural geometry of 2 is closely similar to its iron counterpart, [Fe2III(µ-OH)(µ- $CH_3COO)_2(HBpz_3)_2]^+$ [Fe···Fe = 3.439(1) Å, Fe-O_{oxo} = 1.956 Å, Fe-O-Fe = 123.1(2)°].¹⁶

The electrochemical properties of complexes 1 and 2 were analyzed by cyclic voltammetry (Fig. 3). The cyclic voltammogram (CV) of 1 in acetonitrile containing 0.1 M [Bu_{1}^{a}N][PF_{6}] as supporting electrolyte [Fig. 3(a)] showed two reversible oxidation waves at 0.17 V ($E_{1/2}^{ox1}$) vs. Ag/AgPF₆ and 1.35 V ($E_{1/2}^{ox2}$), which could correspond to [Ru][-(μ -O)(μ -CH₃COO)₂L₂]/[Ru][Ru][V(μ -O)(μ -CH₃COO)₂L₂]+ and [Ru][V(μ -O)(μ -CH₃COO)₂L₂]+ (L = HBpz₃) redox processes on the basis of coulometric analyses. The extremely large half-potential separation, $\Delta E^{ox} = |E_{1/2}^{ox1} - E_{1/2}^{ox2}| = 1.18$ V, implied that the mixed-valent Ru][V(μ -O) complex is remarkably stable, with the conproportionation constant K_{c}^{c} for

Fig. 3 Cyclic voltammograms of **1** (a) and **2** (b) in acetonitrile (0.1 M) [Bu $_4^4$ N][PF $_6$] with a glassy carbon working electrode and an Ag/AgPF $_6$ reference electrode at a scan rate of 100 mV s $^{-1}$ at room temperature. The wave at $E_{\rm pc}^{\rm red1}$ of **2** (b) disappeared upon addition of p-toluene sulfonic acid

 $Ru_{\perp}^{III} + Ru_{\perp}^{IV} \rightleftharpoons 2Ru_{\parallel}^{III}Ru_{\parallel}^{IV}$ being 9.1 × 10¹⁹. In fact, a potentiostatic electrolysis of 1 at 0.7 V consumed 1 F per dimer to afford $[Ru_{\parallel}^{III}Ru_{\parallel}^{IV}(\mu\text{-CH}_3COO)_2L_2](PF_6)$ (3), which was also prepared by the oxidation of 1 with $(NH_4)_2Ce(NO_3)_6$ in the presence of NH_4PF_6 .† The CV of 1 exhibited only one irreversible reduction wave at -1.52 V (E_{pc}^{red1}), suggesting two-electron reduction of 1 to Ru_{\parallel}^{II} species followed by a structural change of the dinuclear core. The CV of 2 [Fig. 3(b)], protonated at the oxo bridge, dramatically changed and showed two reversible reduction processes at -1.14 V ($E_{1/2}^{red2}$) and -0.45 V

Scheme 1 Proton-coupled redox processes at $E_{\rm pc}^{\rm ox1'}$ and $E_{\rm pa}^{\rm ox1}$

 $(E_{1/2}^{\rm red3})$. The coulometric analyses indicated that they were to two-step one-electron transfer assignable $[Ru_2^{II}(\mu\text{-OH})(\mu\text{-CH}_3COO)_2L_2]^- \rightleftharpoons [Ru^{II}Ru^{III}(\mu\text{-OH})(\mu\text{-CH}_3COO)_2L_2]^ CH_3COO)_2L_2$] \rightleftharpoons $[Ru_2^{III}(\mu\text{-OH})(\mu\text{-CH}_3COO)_2L_2]^+$. The Ru^{II} Ru^{III} mixed-valence species is estimated to be fairly stable from the large half-potential separation, $\Delta E^{\text{red}} = |E_{1/2}^{\text{red}2}|$ $-E_{1/2}^{\text{red 3}}| = 690 \text{ mV } (K_c = 4.7 \times 10^{11})$. The CV in the positive potential showed a redox couple at 0.95 V (E_{pa}^{ox1}) and 0.25 V $(E_{\rm pc}^{\rm ox1'})$, which is assumed to involve an electrochemical process as indicated in Scheme 1, and also showed the $[Ru^{III}Ru^{IV}(\mu\text{-O})(\mu\text{-CH}_3\text{COO})_2L_2]^+/[Ru_2^{IV}(\mu\text{-O})(\mu\text{-CH}_3\text{COO})_2L_2]^{2+}$ process at $E_{1/2}^{ox2}$. The electrochemical study clearly demonstrated that a wide range of oxidation states, from Ru₂^{II} to Ru₂^{IV}, could be accessible from the diruthenium(III) complexes 1 and 2 and that the protonation/deprotonation at the monoatom bridge dramatically switched the redox processes.

We are now trying to isolate the high and low valency diruthenium species (Ru₂^{IV} and Ru₂^{II}), the reactivity and physical properties of which could be very useful for mimicking biological metabolisms of small molecules.

Acknowledgements

The authors thank Professor Yoichi Sasaki of Hokkaido University for helpful discussion. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan (no. 10131247etc), and Grants from Iwatani, Nippon Itagarasu, Mitsubishi-Yuka, and Nagase Foundations and the San-Ei Gen Foundation for Food Chemical Research.

References

- 1 S. J. Lippard, Angew. Chem., Int. Ed. Engl., 1988, 27, 344.
- 2 D. M. J. Kurtz, Chem. Rev., 1990, 90, 585.
- 3 A. L. Feig and S. J. Lippard, Chem. Rev., 1994, 94, 759.
- 4 T. Tanase, M. Kato, Y. Yamada, K. Tanaka, K. Lee, Y. Sugihara, T. Nagano and S. Yano, *Chem. Lett.*, 1994, 1853.
- 5 T. Tanase, Y. Yamada, K. Tanaka, T. Miyazu, M. Kato, K. Lee, Y. Sugihara, W. Mori, A. Ichimura, I. Kinoshita, Y. Yamamoto, M. Haga, Y. Sasaki and S. Yano, *Inorg. Chem.*, 1996, 35, 6230.
- 6 W. Ruttinger and G. C. Dismukes, Chem. Rev., 1997, 97, 1.
- 7 W. H. Armstrong and S. J. Lippard, J. Am. Chem. Soc., 1983, 105, 4837.
- 8 W. H. Armstrong, A. Spool, G. C. Papaefthymiou, R. B. Frankel and S. J. Lippard, J. Am. Chem. Soc., 1984, 106, 3653.
- R. W. Mitchell, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 846.
- 10 P. Neubold, K. Wieghardt, B. Nuber and J. Weiss, Angew. Chem., Ind. Ed. Engl., 1988, 27, 933.
- 11 P. Neubold, K. Wieghardt, B. Nuber and J. Weiss, *Inorg. Chem.*,
- 1989, **28**, 459.

 12 Y. Sasaki, M. Suzuki, A. Nagasawa, A. Tokiwa, M. Ebihara, T. Yamaguchi, C. Kabuto, T. Ochi and T. Ito, *Inorg. Chem.* 1991.
- T. Yamaguchi, C. Kabuto, T. Ochi and T. Ito, *Inorg. Chem.*, 1991, 30, 4903.
 13 C. Sudha, S. K. Mandal and A. R. Chakravarty, *Inorg. Chem.*,
- 1993, 32, 3801.
- 14 A. Llobet, M. E. Curry, H. T. Evans and T. J. Meyer, *Inorg. Chem.*, 1989, **28**, 3131.
- 15 M. Valli, S. Miyata, H. Wakita, T. Yamaguchi, A. Kikuchi, K. Umakoshi, T. Imamura and Y. Sasaki, *Inorg. Chem.*, 1997, 36, 4622.
- 16 W. H. Armstrong and S. J. Lippard, J. Am. Chem. Soc., 1984, 106, 4632.

Received in Cambridge, UK, 15th April 1998; Letter 8/04617D